Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167160, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730061

RESUMO

The emergence of carbapenem resistance is a major public health threat in sub-Saharan Africa but remains poorly understood, particularly at the human-animal-environment interface. This study provides the first One Health-based study on the epidemiology of Carbapenemase-Producing Gram-Negative Bacteria (CP-GNB) in Djibouti City, Djibouti, East Africa. In total, 800 community urine samples and 500 hospital specimens from humans, 270 livestock fecal samples, 60 fish samples, and 20 water samples were collected and tested for carbapenem resistance. The overall estimated CP-GNB prevalence was 1.9 % (32/1650 samples) and specifically concerned 0.3 % of community urine samples, 2.8 % of clinical specimens, 2.6 % of livestock fecal samples, 11.7 % of fish samples, and 10 % of water samples. The 32 CP-GNB included 19 Escherichia coli, seven Acinetobacter baumannii, five Klebsiella pneumoniae, and one Proteus mirabilis isolate. Short-read (Illumina) and long-read (Nanopore) genome sequencing revealed that carbapenem resistance was mainly associated with chromosomal carriage of blaNDM-1, blaOXA-23, blaOXA-48, blaOXA-66, and blaOXA-69 in A. baumannii, and with plasmid carriage in Enterobacterales (blaNDM-1 and blaOXA-181 in E. coli, blaNDM-1, blaNDM-5 and blaOXA-48 in K. pneumoniae, and blaNDM-1 in P. mirabilis). Moreover, 17/32 CP-GNB isolates belonged to three epidemic clones: (1) A. baumannii sequence type (ST) 1697,2535 that showed a distribution pattern consistent with intra- and inter-hospital dissemination; (2) E. coli ST10 that circulated at the human-animal-environment interface; and (3) K. pneumoniae ST147 that circulated at the human-environment interface. Horizontal exchanges probably contributed to carbapenem resistance dissemination in the city, especially the blaOXA-181-carrying ColKP3-IncX3 hybrid plasmid that was found in E. coli isolates belonging to different STs. Our study highlights that despite a relatively low CP-GNB prevalence in Djibouti City, plasmids harboring carbapenem resistance circulate in humans, animals and environment. Our findings stress the need to implement preventive and control measures for reducing the circulation of this potentially emerging public health threat.


Assuntos
Proteínas de Bactérias , Escherichia coli , Humanos , Animais , Escherichia coli/genética , Djibuti/epidemiologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Plasmídeos , Klebsiella pneumoniae , Carbapenêmicos , Genômica , Água , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
2.
Antibiotics (Basel) ; 12(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37508230

RESUMO

Introduction: The antimicrobial resistance (AMR) of bacteria is increasing rapidly against all classes of antibiotics, with the increasing detection of carbapenem-resistant isolates. However, while growing prevalence has been reported around the world, data on the prevalence of carbapenem resistance in developing countries are fairly limited. In this study, we investigated and determined the resistance rate to carbapenems among multidrug-resistant Gram-negative bacteria (MDR-GNB) isolated in Djibouti and characterized their resistance mechanisms. Results: Of the 256 isolates, 235 (91.8%) were identified as Gram-negative bacteria (GNB). Of these GNBs, 225 (95.7%) isolates exhibited a multidrug resistance phenotype, and 20 (8.5%) isolates were resistant to carbapenems, including 13 Escherichia coli, 4 Acinetobacter baumannii, 2 Klebsiella pneumoniae and 1 Proteus mirabilis. The most predominant GNB in this hospital setting were E. coli and K. pneumoniae species. Carbapenemase genes such as blaOXA-48 and blaNDM-5 were identified, respectively, in six and four E. coli isolates, whereas the carbapenemase blaNDM-1 was identified in three E. coli, two K. pneumoniae, one P. mirabilis and one A. baumannii. Moreover, three A. baumannii isolates co-hosted blaOXA-23 and blaNDM-1. Materials and Methods: A total of 256 clinical strains collected between 2019 and 2020 were identified using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). Antibiotic susceptibility testing was performed using disk diffusion and E-test methods. Real-time polymerase chain reaction (RT-PCR), standard PCR and sequencing were used to investigate genes encoding for extended-spectrum-ß-lactamases, carbapenemases and colistin resistance genes. Conclusions: We report, for the first time, the presence of MDR-GNB clinical isolates and the emergence of carbapenem-resistant isolates in Djibouti. In addition to performing antimicrobial susceptibility testing, we recommend phenotypic and molecular screening to track the spread of carbapenemase genes among clinical GNB isolates.

3.
Malar J ; 22(1): 147, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37131225

RESUMO

BACKGROUND: The Republic of Djibouti is a malaria endemic country that was in pre-elimination phase in 2006-2012. From 2013, however, malaria has re-emerged in the country, and its prevalence has been increasing every year. Given the co-circulation of several infectious agents in the country, the assessment of malaria infection based on microscopy or histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDT) has shown its limitations. This study, therefore, aimed to assess the prevalence of malaria among febrile patients in Djibouti city using more robust molecular tools. METHODS: All suspected malaria cases reported to be microscopy-positive were randomly sampled (n = 1113) and included in four health structures in Djibouti city over a 4-year period (2018-2021), mainly during the malaria transmission season (January-May). Socio-demographic information was collected, and RDT was performed in most of the included patients. The diagnosis was confirmed by species-specific nested polymerase chain reaction (PCR). Data were analysed using Fisher's exact test and kappa statistics. RESULTS: In total, 1113 patients with suspected malaria and available blood samples were included. PCR confirmed that 788/1113 (70.8%) were positive for malaria. Among PCR-positive samples, 656 (83.2%) were due to Plasmodium falciparum, 88 (11.2%) Plasmodium vivax, and 44 (5.6%) P. falciparum/P. vivax mixed infections. In 2020, P. falciparum infections were confirmed by PCR in 50% (144/288) of negative RDTs. After the change of RDT in 2021, this percentage decreased to 17%. False negative RDT results were found more frequently (P < 0.05) in four districts of Djibouti city (Balbala, Quartier 7, Quartier 6, and Arhiba). Malaria occurred less frequently in regular bed net users than in non-users (odds ratio [OR]: 0.62, 95% confidence interval [CI]: 0.42-0.92). CONCLUSIONS: The present study confirmed the high prevalence of falciparum malaria and, to a lesser extent, vivax malaria. Nevertheless, 29% of suspected malaria cases were misdiagnosed by microscopy and/or RDT. There is a need to strengthen the capacity for diagnosis by microscopy and to evaluate the possible role of P. falciparum hrp2 gene deletion, which leads to false negative cases of P. falciparum.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Djibuti/epidemiologia , Antígenos de Protozoários/genética , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Malária Vivax/diagnóstico , Malária Vivax/epidemiologia , Plasmodium falciparum/genética , Testes Diagnósticos de Rotina/métodos
5.
Front Med (Lausanne) ; 8: 737602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540874

RESUMO

Since the start of COVID-19 pandemic the Republic of Djibouti, in the horn of Africa, has experienced two epidemic waves of the virus between April and August 2020 and between February and May 2021. By May 2021, COVID-19 had affected 1.18% of the Djiboutian population and caused 152 deaths. Djibouti hosts several foreign military bases which makes it a potential hot-spot for the introduction of different SARS-CoV-2 strains. We genotyped fifty three viruses that have spread during the two epidemic waves. Next, using spike sequencing of twenty-eight strains and whole genome sequencing of thirteen strains, we found that Nexstrain clades 20A and 20B with a typically European D614G substitution in the spike and a frequent P2633L substitution in nsp16 were the dominant viruses during the first epidemic wave, while the clade 20H South African variants spread during the second wave characterized by an increase in the number of severe forms of COVID-19.

6.
Vet Microbiol ; 164(3-4): 392-8, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23583012

RESUMO

Several marine pathogens are thought to be implicated in the summer mortality phenomenon that strikes the Pacific oyster stocks (Crassostrea gigas) in Europe since more than a decade. Although, since 2008, a herpes virus variant (microvar) is considered the main responsible for juvenile mortalities, the role of several associated bacteria is less clear. One of these, Vibrio aestuarianus, has often been detected in moribund oysters, and laboratory challenges proved its involvement in oyster death. However, the mechanisms by which this pathogen enters the oyster and transmits in-between specimens or collaborates with other pathogens remain thus far almost unknown. To establish genuine model strains, which allow the detection of the bacteria during the first hours of infection, both a highly pathogenic (02/41) and a weakly pathogenic strain (01/308) were transformed with green fluorescent protein-expression vectors. The clones obtained were compared to the parental strains for their growth characteristics, basic metabolism, antibiotic-resistance and virulence. The 02/41 derivative was in all aspects indistinguishable from the parental strain. In contrast, in the 01/308 strain GFP expression led to a significant increase of virulence pointing to the dangers of GFP-tagging. The 02/41 GFP strain allows easy quantification by flow cytometry in both seawater and oyster haemolymph, and most importantly, its in situ detection will permit discerning the bacterium's routes inside the oyster tissues.


Assuntos
Crassostrea/microbiologia , Proteínas de Fluorescência Verde/metabolismo , Vibrio/fisiologia , Animais , Europa (Continente) , Hemolinfa/microbiologia , Estações do Ano , Água do Mar/microbiologia , Vibrio/genética , Vibrio/crescimento & desenvolvimento , Vibrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...